
Reduce Everything

to Multiplication

Allan Steel

University of Sydney

(Magma Project)

1

Asymptotically-Fast Algorithms

One of my ongoing research aims in Magma has been to
develop algorithms for fundamental problems in Computer
Algebra which:

(1) Have the best theoretical complexity;

(2) Work very well in practice (i.e., beat classical algo-
rithms within practical ranges).

This seems to be achieved now in Magma for a wide range
of algorithms for exact algebraic computations with:

(1) Integers

(2) Polynomials

(3) Matrices

2

Integer Multiplication

Fast Fourier Transform (FFT)-based integer multiplica-

tion is the critical basis of all asymptotically-fast polyno-

mial algebra.

Schönhage-Strassen integer multiplication: compute in

R = Z
22k+1

so 2 is a 22k+1
-th root of unity in R.

Complexity for multiplying n-bit integers: n log(n) log(log(n)).

Multiply two million-decimal-digit integers on 2.4GHz Opteron:

0.06s (17 times a sec).

3

FFT Polynomial Multiplication

(1) Kronecker-Schönhage substitution/Segmentation: map

to integer mult (evaluate at suitable power of 2).

(2) Direct Schönhage-Strassen (polynomial) FFT multi-

plication.

Segmentation is a common approach and always better

when degree >> coefficents bit-length.

Direct S-S better when coefficient bit-length roughly ≥
1/2 degree.

Mult 2 polys, each degree 1000 and 1000-bit coefficients:

Segmentation: 0.0307s (221-bit integers), Direct S-S: 0.0125s.

4

Reduce arithmetic to Multiplication

Reduce (univariate) operations to multiplication:

• Division

• GCD

• Resultant

• Rational reconstruction

Thus FFT-complexity possible for all these algorithms

(possibly with extra log factor), and this works well in

practice, so is not just theoretical.

5

Univariate Factorization Over Finite Fields

Von zur Gathen/Kaltofen/Shoup algorithm currently best

algorithm. Shoup’s critical components to make it fast:

• Perform divisions by multiplying by inverse of modu-

lus.

– Pre-compute inverse of modulus and store FFT

transform.

– Use two short products and a wrapped convolu-

tion.

• Brent-Kung modular evaluation algorithm (1978) to

compute xqi
mod f quickly.

6

Factorization Challenge over Finite Fields

J. von zur Gathen, SIGSAM Bulletin (April 1992).

Let pn be the first prime > π · 2n (thus has n + 1 bits).

Factor xn + x + 1 over Fpn.

n
200 30h 1993: M. Monagan, Maple, DEC 3100
300 110h 1994: C. Playoust/A. Steel, Magma, SunMP670
500 63h 1995: P. Zimmermann, MuPAD, Sun Sparc-10

1024 51h 1995: V. Shoup, 20-MIPS Sun 4
200 0.6s 2006: Magma V2.13 on 2.4Ghz Opteron
300 4.9s
500 7.6s

1024 102.8s
2048 1291.0s
4096 20286.7s

7

Bivariate Factorization

Factorization in Fq[x, y] (with M. van Hoeij et al.):

• Use van Hoeij idea to collect relations based on traces.

• Direct linear algebra (no LLL or approximation needed).

• Time dominated by Hensel lifting over power series.

Involves multiplying in Fqk[[y]][x].

8

Bivariate Factorization Example

Factor f ∈ F5[x, t] =

x78125 + x15625t2750 + x15625t2600 + 4x3125t3750 + 4x3125t3150 +

2x3125t3000 + 4x3125 + 4x625t3500 + 3x625t3350 + 2x625t3200 +

4x625t2750 + 4x625t2600 + x125t3300 + x125t3270 + 2x125t3150 +

x125t3120 + 3x125t3000 + x25t3350 + x25t3230 + x25t3224 + 3x25t3200

+4x5t3270 + 4x5t3120 + 4xt3224.

Due to G. Malle (Dickson Groups). Extremely sparse:

(78125,3750), 24 terms. Factors in 25 minutes (2GHz

Opteron, 590MB). Factors x-degrees: 1, 15624, 15750,

15750, 15500, 15500 (most about 6000 terms).

One Hensel step: multiply polys in F53[[t]][x] by mapping

to integers. Integers each have about 45 million decimal

digits and multiplied in 6.7 seconds. So FFT-based even

over small finite field!

9

Matrix Multiplication

Consider multiplication of a pair of 2 by 2 matrices:

(
a11 a12
a21 a22

) (
b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)

Classical Method: 8 multiplications, 4 additions.

c11 = a11b11 + a12b21,

c12 = a11b12 + a12b22,

c21 = a21b11 + a22b21,

c22 = a21b12 + a22b22.

General Complexity: O(n3).

10

Strassen’s Method (1969): 7 multiplications, 18 addi-
tions or subtractions (18 improved to 15 by Winograd).

x1 = (a11 + a22) · (b11 + b22),

x2 = (a21 + a22) · b11,

x3 = a11 · (b12 − b22),

x4 = a22 · (b21 − b11),

x5 = (a11 + a12) · b22,

x6 = (a21 − a11) · (b11 + b12),

x7 = (a12 − a22) · (b21 + b22),

c11 = x1 + x4 − x5 + x7,

c12 = x3 + x5,

c21 = x2 + x4,

c22 = x1 + x3 − x2 + x6.

11

• Strassen’s method leads to a recursive algorithm for

matrix multiplication – commutativity is NOT used!

• Implementation is very complicated for non-square ma-

trices, and for dimensions which are not powers of 2.

• Much more difficult to implement than Karatsuba (the

simplest asymptotically-fast methods for their respec-

tive problems).

Complexity: O(nlog2 7) ≈ O(n2.807).

12

Strassen IS Applicable In Practice

• For rings for which no fast modular algorithm is avail-

able: dim 2.

• Bit length of entries very much larger than dimension:

dim 2.

• Mod p, where residues are represented via double floating-

point numbers so ATLAS (Automatically Tuned Lin-

ear Algebra Software) can be used: dim 500.

• Small prime finite field: dim 1000 (matrices of dim

≥ 10000 not unusual).

• Non-prime finite field mapping technique (see below):

dim 125.

13

Also sprach der Meister:

Donald Knuth, AOCP, Vol. 2, 3rd Ed., 1997 (my em-
phasis):

These theoretical results [Strassen’s method] are
quite striking, but from a practical standpoint they
are of little use because n must be very large. . . [p.
501].

Richard Brent (1970) estimated that Strassen’s
scheme would not begin to excel over Winograd’s
[cubic complexity] scheme until n ≈ 250; and such
enormous matrices rarely occur in practice unless
they are very sparse, when other techniques apply
[p. 501].

Of course such asymptotically “fast” multiplica-
tion is strictly of theoretical interest [p. 718;
added in 1997 edition!!!].

14

In response:

Erich Kaltofen, Challenges of Symbolic Algebra (EECAD

1998):

Open Problem 7: Convince Donald Knuth that

these asymptotically fast methods are of practical

value. If he pays you $2.56 for this technical error,

you have solved this problem.

Allan Steel (2000):

For quite practical sizes, Strassen’s method is streets

ahead of the classical method. [German etymo-

logical pun]

15

Modular Matrix Multiplication

Multiply a pair of n by n matrices, with all entries being

integers of up to k bits each.

M(n): complexity of the matrix multiplication algorithm

(arithmetic operations).

Assume k is small enough that only classical integer multi-

plication is applicable (true for k up to several hundreds).

Classical method: M(n)O(k2) bit operations.

Modular method: M(n)O(k) + O(n2)O(k2) bit opera-

tions.

16

Modular method: M(n)O(k) + O(n2)O(k2) bit opera-

tions.

• Reduce the input modulo several primes, multiply each

such pair modularly and use Chinese remaindering for

the result. Use ATLAS for the modular computations.

• To multiply matrices over Fp, large p: multiply over Z

by above, then mod by p at end.

• If n >> k, modular method is practically linear in k.

17

Recursive Echelonization

Reduces to matrix multiplication so that the complexity

is that of multiplication.

V. Strassen sketched such an algorithm for computing the

inverse of a square matrix, assuming some conditions:

Gaussian Elimination is not Optimal (Numer. Math.,

1969).

This paper also had the original fast multiplication formu-

lae.

18

Recursive Echelonization Examples

Dense random matrices over Fp, where 1024 · p2 ≤ 253

(2.4GHz Opteron), so ATLAS applicable.

n A ·B Rec Rec Classical Classical
Det(A) A−1 Det(A) A−1

512 0.090 0.070 0.180 0.140 0.670
1024 0.650 0.450 1.070 1.230 5.540
2048 4.280 2.900 6.820 9.570 45.840
4096 29.470 18.860 44.550 75.250 350.680
8192 215.80 121.75 296.03 621.370 2839.070

19

Computations in the Finite Field Fq

Finite field Fq
∼= Fp[α]/〈f(α)〉, q = pd, primitive element

α.

Zech logarithms: i represents αi; q − 1 represents 0.

Multiplication/inversion/division easy.

Addition via a + b = a(1 + b/a); store successor table for:

αs(i) = αi + 1,

which takes O(q) bytes.

20

Fast Matrix Multiplication over Fq

Multiply n× n matrix over Fq
∼= Fp[α]/〈f(α)〉, q = pd.

Find smallest β = 2k with nd(p− 1)2 < β.

Interpret entries as polynomials in Fp[α] and map element

via α 7→ β to yield integer. Multiply the integral matrices

and map entry e back thus:

• Write e in base β, giving polynomial in Z[x] and reduce

coefficients mod p.

• Form low l and high h elements from the blocks of d

coefficients, mapping back to Zech form.

• Result is l + αdh.

21

Multiply Matrices over F52

q = 52. Can use C doubles (ATLAS) for mapped integral

product.

Size Old New Speed- Old New Speed-
Mult Mult up Inverse Inverse up

100 0.006 0.001 6.1 0.008 0.005 1.8
200 0.041 0.006 7.0 0.061 0.020 3.0
500 0.612 0.068 9.0 0.916 0.160 5.7

1000 4.820 0.510 9.4 7.290 0.870 8.3
2000 38.770 3.530 10.9 58.590 5.540 10.5
4000 304.150 25.000 12.1 472.500 36.760 12.8

n nd(p− 1)2 β Max coeff
100 3200 212 234.6

1000 32000 215 244.0

4000 128000 217 251.0

22

Multiply Matrices over F235

q = 235 = 6436343. Mapped integral product computed

using modular CRT algorithm for large integers.

Size Old New Speed- Old New Speed-
Mult Mult up Inverse Inverse up

100 0.84 0.02 33.6 0.96 0.14 6.8
200 6.69 0.12 53.5 7.23 0.66 10.9
500 103.80 1.22 85.1 108.55 4.99 21.7

1000 828.68 7.13 116.2 850.19 24.32 34.9
2000 6615.68 49.07 134.8 6764.02 131.86 51.3
4000 52799.74 366.84 143.9 53807.77 966.75 55.65

n nd(p− 1)2 β Max coeff # primes
100 242000 218 2186.4 9

1000 2420000 222 2228.3 11
4000 9680000 224 2250.3 12

23

Brent-Kung Modular Composition (1978)

Given polynomials f, g, h ∈ K[x], K field, degrees ≤ n:

compute f(g) mod h.

Baby-step/giant-step technique. Set s = b√nc, t = dn/se.

Compute gj = gj mod h for j = 1, . . . , s, by successively

multiplying by g and reducing mod h.

Divide f into t blocks of s consecutive coefficients.

24

Set e to zero.

For each block Ci = (ci,1, . . . , ci,s) for i = t, t − 1, . . .1,

compute the linear combination r of the gj given by Ci,

and set e to e · f + r.

At the end, e = f(g) mod h.

Thus the cost is approximately 2 · √n modular products,

instead of n modular products (using standard Horner’s

rule).

25

Matrix version

Write each gj = gj mod h (for j = 1, . . . , s) as a vector and

form matrix B from these vectors: s× n.

When applying, make each block Ci = (ci,1, . . . , ci,s) (for

i = t, t − 1, . . .1) a vector and form matrix A from these

vectors: t× s.

Multiply A by B: (t× s)× (s× n).

Fast matrix multiplication applicable.

26

Application: Return to Factoring

Factor polynomial f over a finite field (Cantor/Zassenhaus,

von zur Gathen/Kaltofen/Shoup):

First compute g = xq mod f , where q is the size of the

field.

One then needs xqi
mod f for i = 2,

Instead of successively raising g to the power of q mod f

and repeating, one can instead compute g2 = g(g), g3 =

g2(g), etc., all done mod f .

Each of these compositions are efficiently done via the

Brent-Kung algorithm.

27

Factoring comparison

Factor xn + x + 1 over F235.

n Direct Direct Mat Mat
B-K Total B-K Total

1000 10.4 15.0 3.8 8.4
2000 57.9 81.9 18.2 43.2
5000 597.3 734.2 173.5 310.4

10000 4119.4 4784.5 916.1 1581.5

28

